MAP METHOD:
3.1: Obtain the simplified expressions in sum of products for the following boolean function:
a) F(x,y,z) =m2+m3+m6+m7
solution:
F=Y
b) F(A,B,C,D)=m7+m13+m14+m15
3.2: Obtain the simplified expressions in sum of products
for the following Boolean function:
a) xy + x’y’z’ + x’yz’
F=x’z’+xy
b) A’B+ BC’+B’C’
F=C’+ A’B
c) a’b’ + bc + a’bc’
F=a’+bc
d) xy’z + xyz’ + x’yz + xyz
F= yz + xz + xy
3.3: obtain the simplified
expressions in sum of products for the following Boolean functions:
a) D(A’+B) + B’(C+AD)
F=D+ B’C
b) ABD + A’C’D’ + A’B + A’CD’ + AB’D'
F=BD + B’D’ + A’D’
c) k’lm’ + k’m’n + klm’n’ + lmn’
F=ln’ + k’m’n
d) A’B’C’D’ + AC’D’ + B’CD’ + A’BCD + BC’D
F=B’D’ + A’BD + ABC’
e) xz’ + w’xy’ + w(x’y + xy’)
F= x’z + x’y’ + wx’y
3.4: obtain the simplified expressions in sum of products
for the following Boolean function
a) F(A,B,C,D,E) =m0+m1+m4+m5+m16+m17+m21+m25+m29
F=B’C’D’ + AD’E + A’B’D’
F= B’C’E’ + DE + A’B’C
c) A’B’CE’ + A’B’C’D’ + B’D’E’ + B’CD’ + CDE’ + BDE’
F=BDE’ + CDE’ + B’CD’ + B’D’E’ + A’B’D’
3.5: given the following table:
x | y | z | F1 | F2 |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 |
a) a) express F1 and F2 in product of maxterms
F1=Ï€(0,3,5,6)
F2=Ï€(0,1,2,4)
b) b) obtain the simplified functions in sum of
products
F1=m1+m2+m4+m7
F2=m3+m5+m6+m7
F1=x’y’z + x’yz’ + xy’z’ + xyz
c) c) obtain the simplified function in product of sum
F1’=x’y’z’ + xy’z + x’yz + xyz’
F1= (x+y+z) (x’+y+z’) (x+y’+z’) (x’+y’+z)
F2’=x’z’ + y’z’ + x’y’
F2=(x+z) (y+z) (x+y)
3.6: obtain the simplified expressions in product of sum:
a) F(x,y,z)=Ï€(0,1,4,5)
F’=Y’
F=Y
b)F(A,B,C,D)=Ï€(0,1,2,3,4,10,11)
F’ = A’B’+B’C + A’C’D’
F=(A+B) (B+C’)
c) F(w,x,y,z)= π(1,3,5,7,13,15)
F= (w+z’) (x’+z’)
3.7: obtain the simplified expression in
1) sum of products
2) product of sum
a) x’z’ + y’z’ + yz’ + xyz
F=z’+ xy
F’ = x’z + y’z
F= (x+z’) (y+z’)
b) (A+B’+D) (A’+B+D) (C+D) (C’+D’)
F=C’D + A’B’CD’ + ABCD’
F’=C’D’ + CD + A’BC + AB’C
=(C+D) (C’+D’)
(A+B’+D’) (A’+B+D’)
c) (A’+B’+D’) (A+B’+C’)(A’+B+D’) (B+C’+D’)
F=B’D’ + A’C’ + AD’
F’=AD+CD +A’BC
F=(A’+D’) (C’+D’) (A+B’+C’)
d) (A’+B’+D) (A’+D’) (A+B+D’) (A+B’+C+D)
F=B’D’ + A’BD + A’CD’
F’=B’D + AB + BC’D’
F= (B+D’) (A’+B’) (B’+C+D)
e) w’yz’+ vw’z’ + vw’x + v’wz + v’w’y’z’
F= w’z’ + v’wz + vw’x
F’= vw + wz’ + w’x’z + v’w’z
F= (v’+w’) (w’+z) (w+x+z’) (v+w+z’)
3.8: draw the gate implementation of the simplified boolean
functions in problem 3.7 using AND and OR gates
a) F=z’+ xy
F= (x+z’) (y+z’)
b) F=C’D + A’B’CD’ + ABCD’
F =(C+D) (C’+D’) (A+B’+D’) (A’+B+D’)
c)F=B’D’ + A’C’ + AD’
F=(A’+D’) (C’+D’) (A+B’+C’)
d) F=B’D’ + A’BD + A’CD’
F= (B+D’) (A’+B’) (B’+C+D)
b) e) F= w’z’ + v’wz + vw’x
F= (v’+w’) (w’+z) (w+x+z’) (v+w+z’)
3.9: simplify each of the following functions and implement
them with NAND gates. Give two alternatives.
a) F1=AC’+ACE+ACE’+A’CD’+A’D’E’
F1=D’E’+A+CD’
F1’=A’D+A’C’E
F1=(A’D+A’C’E)’
b) F2=(B’+D’)(A’+C’+D)(A+B’+C’+D)(A’+B+C’+D’)
F2’=BD+BC+AC
F2=(BD+BC+AC)’
F2=C’D’+A’B’+B’C’
3.15: simplify the Boolean function in sum of products using
the don’t care conditions
a) F=y’+x’z’
d=yz+xy
F=1
b) F=B’C’D’ + BCD’ + ABCD’
d=B’CD’+A’BC’D
F=B’D’ + CD’
1 Comments
Chp 3 Q# 11 to 20?
ReplyDelete