Boolean algebra and logic gates
2.5 : Simplify the
following to minimum number of literals
a) xy +xy'
=x ( y + y' )
=x
b) ( x+y ) ( x+y' )
= xx + xy' + xy + yy'
=x + x( y+y' )
=x + x
=x
c) xyz +x'y + xyz'
= xy ( z+z' ) + x'y
=xy + x'y
=y (x+x')
d)zx+ zx'y
= zx + zy ( theorem 7)
= z(x+y)
e) (A+B)' (A'+B')'
=A'B' (AB)
= AA' BB'
=0
f) y ( wz'+wz) + xy
= wy(z'+z) + xy
=y ( x+w)
2.6 : Reduce the following boolean expressions to the
required no of literals
a) ABC + A'B'C + A'BC + ABC' + A'B'C'(to five literals)
= AB ( C+C' ) + A'B'(C+C') +A'BC
=AB+A'B'+A'BC
=AB + BC + A'B' ( theorem 7)
= B(A+C) + A'B'
b) BC + AC' + AB + BCD (to four literals)
= BC (A+D) + A(B+C')
=BC + AB +AC' ( theorem 9)
= BC + AC'
c) [ (CD)' + A]' + A + CD + AB ( to three literals)
= CDA' + A + CD + AB
= CD (1+A') + A (1+B)
= CD + A
d) (A+C+D) (A+C+D') (A+C'+D) (A+B') ( to four literals)
=( A+C+DD') (A+C'+D) (A+B')
=(A+C) ( A+C'+D) (A+B')
=(A+C(C'+D))(A+B')
=(A+CD)(A+B')
=A + CDB'
2.7 : Find the complement of the following boolean functions and reduce them to a minimum number of literals:
b) B'D + A'BC' + ACD + A'BC
[B'D + A'BC' + ACD + A'BC]'
=(B'D)' (A'BC')' (ACD)' (A'BC)'
=(B + D') ( A+B'+C) (A'+C'+D') (A+B'+C')
= (B+D') (A+B'+CC') (A'+C'+D')
=(B+D') (A+B') (A'+C'+D')
=(AB+BB'+AD'+B'D') (A'+C'+D')
=(AB+AD'+B'D') (A'+C'+D')
=(AB+B'D') (A+C'+D')
=AAB + AC'B + ABD' + AB'D' + B'C'D' + B'D'D'
=AB(1+C') + AD'(B+B') + B'D'(1+C')
=AB + AD' + B'D'
=A(B+D') + B'D'
c) [(AB)'A] [(AB)'B]
[[(AB)'A] [(AB)'B]]'
=((AB)'A)' + ((AB)'B)'
=( AB + A') + ( AB + B')
= A'+B + B' + A
=1 + 1
= 1
d) AB' + C'D'
[ AB' + C'D']'
= (AB')' (C'D')'
=(A'+B)(C+D)
2.8: given two boolean functions F1 and F2.
a) show that the boolean function E=F1+F2 obtained by ORing the two functions contains the sum of all the minterms in F1 and F2.
solution:
b) show that the boolean function E=F1.F2 obtained by AND ing the two functions contains those minterms common to F1 and F2.
F2=M0+M1+M4+M5
G=M1+M5
2.9: Obtain the truth table of the function
F=xy + xy' + y'z
solution:
2.11: Given the boolean function
F=xy + x'y' +y'z
a) Implement it with AND, OR and NOT gates
b) Implement only with OR and NOT gates
solution:
F=xy + x'y' + y'z
= (xy)'' + (x+y)' + (y'z)''
=(x'+y')' + (x+y)' +(y+z')'
c)Implement it only with AND and NOT gate
solution:
F= xy + x'y' +y'z
=(xy + x'y' + y'z)''
=[ (xy)' (x'y')' (y'z)' ]'
solution:
T1= m0 + m1 +m2
=A'B'C' + A'B'C + A'BC'
=A'B'(C+C') + A'BC'
=A'B' + A'BC'
=A'B' + A'C'
=A'(B'+C')
T2= T1'
=[A'(B'+C')]'
=A+(B'+C')'
=A+BC
2.13: Express the following function in a sum of minterms and a product of maxterms
a) F(A,B,C,D) = D(A'+B) + B'D
F(A,B,C,D)
=A'D+BD+B'D
=A'(B+B')D + (A+A')BD + (A+A')B'D
=A'BD + A'B'D + ABD + A'BD + AB'D + A'B'D
=A'B(C+C')D + A'B'(C+C')D + AB(C+C')D + A'B(C+C')D + AB'(C+C')D + A'B'(C+C')D
=A'BCD + A'BC'D + A'B'CD + A'B'C'D + ABCD + ABC'D + A'BCD + A'BC'D + AB'CD + AB'C'D + A'B'CD + A'B'C'D
=A'BCD + A'BC'D + A'B'CD + A'B'C'D + ABCD + ABC'D + AB'CD + AB'C'D
=m1+m3+m5+m7+m9+m11+m13+m15
=M2+M4+M6+M8+M10+M12+M14
b) F(w,x,y,z) =y'z+wxy'+wxz'+w'x'z
F(w,x,y,z)
=(x+x')y'z + wxy'(z+z') + wx(y+y')z' + w'x'(y+y')z
=xy'z + x'y'z + wxy'z + wxy'z' + wxyz' + wxy'z' + w'x'yz + w'x'y'z
=(w+w') xy'z + (w+w')x'y'z + wxy'z + wxy'z' + wxyz' + wxy'z' + w'x'y'z
=wxyz' + w'xyz' + wx'y'z + w'x'y'z + wxy'z + wxy'z' + wxyz' + wxy'z' + w'x'yz + w'x'y'z
=wxy'z + w'xy'z + wx'y'z + w'x'y'z + wxy'z' + wxyz' + w'x'yz
=m1+m3+m5+m9+m12+m13+m14
=M0+M2+M4+M6+M7+M8+M10+M11+M15
c) F(A,B,C,D)
=(A+B'+C) (A+B') (A+C'+D') (A'+B+C+D') (B+C'+D')
=(A+B'+C+DD') (A+B'+CC'+DD') (A+BB'+C'+D') (A'+B+C+D') (AA'+B+C'+D')
=(A+B'+C+D)(A+B'+C+D')(A+B'+C+D)(A+B'+C+D')(A+B'+C'+D)(A+B'+C'+D')(A+B+C'+D')(A+B'+C'+D')(A'+B+C+D')(A+B+C'+D')(A'+B+C'+D')
=M3+M4+M5+M6+M7+M9+M11
=m0+m1+m2+m8+m10+m12+m13+m14+m15
d) F(A,B,C)
=(A'+B) (B'+C)
=(A'+B+CC')(AA'+B'+C)
=(A'+B+C)(A'+B+C')(A+B'+C)(A'+B'+C)
=M2+M4+M5+M6
=m0+m1+m3+m7
e) F(x,y,z)
=1
=x'y'z'+x'y'z+x'yz'+x'yz+xy'z'+xy'z+xyz'+xyz
=m0+m1+m2+m3+m4+m5+m6+m7
NO MAXTERM
NOTE: If F=0, no minterm
f) F(x,y,z)
=(xy+z) (y+xz)
=(x+z)(y+z)(y+x)(y+z)
=(x+yy'+z)(xx'+y+z)(x+y+zz')
=(x+y+z)(x+y'+z)(x+y+z)(x'+y+z)(x+y+z)(x+y+z')
=M0+M1+M2+M4
=m3+m5+m6+m7
0 Comments